Learning Latent Networks in Vector Auto Regressive Models
نویسندگان
چکیده
We study the problem of learning the dependency graph between random processes in a Vector Autoregressive (VAR) model from samples when a subset of the variables are latent. We show that the dependencies among the observed processes can be identified successfully under some conditions on the VAR model. Moreover, we can recover the length of all directed paths between any two observed processes which pass through latent part. By utilizing this information, we reconstruct the latent subgraph with minimum number of nodes uniquely if its topology is a directed tree. Furthermore, we propose an algorithm that finds all possible minimal latent networks if there exists at most one directed path of each length between any two observed nodes through the latent part. Experimental results on various synthetic and real-world datasets validate our theoretical results.
منابع مشابه
Comparison of Neural Network Models, Vector Auto Regression (VAR), Bayesian Vector-Autoregressive (BVAR), Generalized Auto Regressive Conditional Heteroskedasticity (GARCH) Process and Time Series in Forecasting Inflation in Iran
This paper has two aims. The first is forecasting inflation in Iran using Macroeconomic variables data in Iran (Inflation rate, liquidity, GDP, prices of imported goods and exchange rates) , and the second is comparing the performance of forecasting vector auto regression (VAR), Bayesian Vector-Autoregressive (BVAR), GARCH, time series and neural network models by which Iran's inflation is for...
متن کاملUsing a Fuzzy Auto Regressive Integrated Moving Average Model for Exchange Rate Forecasting
Forecasting models have wide applications in decision making. In the real world, rapid changes normally take place in different areas, specifically in financial markets. Collecting the required data is a main problem for forecasters in such unstable environments. Forecasting methods such as Auto Regressive Integrated Moving Average (ARIMA) models and also Artificial Neural Networks (ANNs) need ...
متن کاملUsing a Fuzzy Auto Regressive Integrated Moving Average Model for Exchange Rate Forecasting
Forecasting models have wide applications in decision making. In the real world, rapid changes normally take place in different areas, specifically in financial markets. Collecting the required data is a main problem for forecasters in such unstable environments. Forecasting methods such as Auto Regressive Integrated Moving Average (ARIMA) models and also Artificial Neural Networks (ANNs) need ...
متن کاملA Seasonal Auto-Regressive Model Based Support Vector Regression Prediction Method for H5N1 avian Influenza Animal Events
The time series prediction of avian influenza epidemics is a complex issue, because avian influenza has latent seasonality which is difficult to identify. Although researchers have applied a neural network (NN) model and the Box-Jenkins model for the seasonal epidemic series research area, the results are limited. In this study, we develop a new prediction seasonal auto-regressive-based support...
متن کاملNetwork identification with latent nodes via auto-regressive models
We consider linear time-invariant networks with unknown interaction topology where only a subset of the nodes, termed manifest, can be directly controlled and observed. The remaining nodes are termed latent and their number is also unknown. Our goal is to identify the transfer function of the manifest subnetwork and determine whether interactions between manifest nodes are direct or mediated by...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1702.08575 شماره
صفحات -
تاریخ انتشار 2017